Assessment of Analytical Specificity in qPCR: SYBR Green and TaqMan Probe Methods for Isonazid-Resistant Mycobacterium tuberculosis

Authors

  • Fusvita Merdekawati Poltekkes Kemenkes Bandung
  • Muhammad Raihan Suryawan Poltekkes Kemenkes Bandung
  • Betty Nurhayati Poltekkes Kemenkes Bandung
  • Sonny Faisal Rinaldi Poltekkes Kemenkes Bandung
  • Aditya Juliastuti Poltekkes Kemenkes Bandung

DOI:

https://doi.org/10.52221/mjmlt.v3i1.793

Keywords:

Tuberculosis, qPCR, Spesificity, Methode Validation

Abstract

Background & Objective: Mycobacterium tuberculosis, often referred to as M. tuberculosis, is an infectious pathogen that is responsible for causing tuberculosis (TB), a prevalent condition that is a leading cause of death globally. The spread of tuberculosis bacteria that are resistant to certain medicines, such as isoniazid, is currently on the rise. Therefore, molecular testing, such as quantitative polymerase chain reaction (qPCR), is needed to rapidly and reliably identify isoniazid-resistant tuberculosis germs.

Method: The purpose of this study was to assess the analytical specificity of TaqMan Probe and SYBR Green qPCR techniques for the detection of isoniazid-resistant tuberculosis. This study was descriptive and quantitative. Analytical specificity was ascertained using MTB DNA with the S315G mutation spiked with E. coli DNA. A paired t-test was used to assess the primary data.

Result: The results show that the analytical specificity values based on the significance of the paired t-test for the SYBR Green and TaqMan Probe methods were 0.398 and 0.790, respectively.

Conclusion: Based on these results, it can be concluded that the analytical specificity of the TaqMan Probe qPCR method was 1.99 times greater than that of the SYBR Green method.

References

Agalloco, J. (2021). Why Validation? In Handbook of Validation in Pharmaceutical Processes, Fourth Edition (pp. 1–4). CRC Press.

Artika, I. M., Dewi, Y. P., Nainggolan, I. M., Siregar, J. E., & Antonjaya, U. (2022). Real-time polymerase chain reaction: Current techniques, applications, and role in COVID-19 diagnosis. Genes, 13(12), 2387.

Baschien, C., & Carl, S. C. (2020). Quantitative Real-Time PCR (qPCR) to Estimate Molecular Fungal Abundance. Methods to Study Litter Decomposition: A Practical Guide, 327–337.

Chung, Y. S., Lee, N. J., Woo, S. H., Kim, J. M., Kim, H. M., Jo, H. J., Park, Y. E., & Han, M. G. (2021). Validation of real-time RT- PCR for detection of SARS-CoV-2 in the early stages of the COVID-19 outbreak in the Republic of Korea. Scientific Reports,11(1). https://doi.org/10.1038/s41598-021-94196-3

Cocozza, A. M., Linh, N. N., & Jaramillo, E. (2020). Is effective patient support missing in the global response to multidrug-resistant tuberculosis? The International Journal of Tuberculosis and Lung Disease, 24(6), 626–630.de Souza, M. de L. R. (2019). Molecular biology in microbiological analysis.

Dorlass, E. G., Monteiro, C. O., Viana, A. O., Soares, C. P., Machado, R. R. G., Thomazelli, L. M., Araujo, D. B., Leal, F. B., Candido, E. D., & Telezynski, B. L. (2020). Lower cost alternatives for molecular diagnosis of COVID-19: conventional RT- PCR and SYBR Green-based RT-qPCR. Brazilian Journal of Microbiology, 51, 1117–1123.

Günther, G., Saathoff, E., Rachow, A., Ekandjo, H., Diergaardt, A., Marais, N., Lange, C., & Nepolo, E. (2022). Clinical evaluation of a line-probe assay for tuberculosis detection and drug-resistance prediction in Namibia. Microbiology Spectrum, 10(3), e00259-22.

Kebede, B. (2019). Tuberculosis Epidemiology, Pathogenesis. Drugs and Drug Resistance Development: A Review. J. Biomed. Sci, 8, 1–10.

Loftis, A. D., & Reeves, W. K. (2012). Principles of real-time PCR. Veterinary PCR Diagnostics, 3.

Lou, Q., Xin, T., Xu, W., Li, R., & Song, J. (2022). TaqMan probe-based quantitative real-time PCR to detect Panax notoginseng in traditional Chinese patent medicines. Frontiers in Pharmacology, 13, 828948.

Marinowic, D. R., Zanirati, G., Rodrigues, F. F., Grahl, M. V. C., Alcará, A. M., Machado, D. C., & Da Costa, J. C. (2021a). A new SYBR Green real-time PCR to detect SARS-CoV-2. Scientific Reports, 11(1), 2224.

Marinowic, D. R., Zanirati, G., Rodrigues, F. F., Grahl, M. V. C., Alcará, A. M., Machado, D. C., & Da Costa, J. C. (2021b). A new SYBR Green real-time PCR to detect SARS-CoV-2. Scientific Reports, 11(1), 2224.

Meemetta, W., Domingos, J. A., Dong, H. T., & Senapin, S. (2020). Development of a SYBR Green quantitative PCR assay for detection of Lates calcarifer herpesvirus (LCHV) in farmed barramundi. Journal of Virological Methods, 285, 113920.

Micheni, L. N., Kassaza, K., Kinyi, H., Ntulume, I., & Bazira, J. (2021). Rifampicin and isoniazid drug resistance among patients diagnosed with pulmonary tuberculosis in southwestern Uganda. PLoS One, 16(10), e0259221.

Nakate, P., Patil, S., Patil, S., Purohit, H., Shelke, Y., & Kinare, S. (2019). Comparison of diagnostic efficacy of GeneXpert MTB/RIF assay with Ziehl Neelsen staining & microscopy in diagnosis of pulmonary tuberculosis. IP International Journal of Medical Microbiology and Tropical Diseases, 5(4), 218–221.

Opota, O., Mazza-Stalder, J., Greub, G., & Jaton, K. (2019). The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clinical Microbiology and Infection, 25(11), 1370–1376.

Patel, J., Upadhyay, M., Kundnani, V., Merchant, Z., Jain, S., & Kire, N. (2020). Diagnostic efficacy, sensitivity, and specificity of Xpert MTB/RIF assay for spinal tuberculosis and rifampicin resistance. Spine, 45(3), 163–169.

Pereira-Gómez, M., Fajardo, A., Echeverria, N., Lopez-Tort, F., Perbolianachis, P., Costábile, A., Aldunate, F., Moreno, P., & Moratorio, G. (2021). Evaluation of SYBR Green real-time PCR for detecting SARS-CoV-2 from clinical samples. Journal of Virological Methods, 289, 114035.

Rahmasari, R., Raekiansyah, M., Azallea, S. N., Nethania, M., Bilqisthy, N., Rozaliyani, A., Bowolaksono, A., & Sauriasari, R. (2022). Low-cost SYBR Green-based RT- qPCR assay for detecting SARS-CoV-2 in an Indonesian setting using WHO- WHO-recommended primers. Heliyon, 8(11).

Rodríguez-Lázaro, D., & Hernández, M. (2013). Real-time PCR in food science: introduction. Current Issues in Molecular Biology, 15(2), 25–38.

Santra, S., Garg, S., Basu, S., Sharma, N., Singh, M. M., & Khanna, A. (2021). The effect of a mhealth intervention on anti-tuberculosis medication adherence in Delhi, India: A quasi-experimental study. Indian Journal of Public Health, 65(1), 34– 38.

Sethi, V., Raghuvanshi, S., Kotwal, A., Khanduri, R. S., & Jethani, V. (2022). Multidrug-resistant musculoskeletal tuberculosis: An aggressive clinical, radiological, and molecular confirmation with genotypic drug susceptibility testing approach. Cureus, 14(9).

Singh, A., Gupta, A. K., & Singh, S. (2020). Molecular mechanisms of drug resistance in Mycobacterium tuberculosis: Role of nanoparticles against multidrug-resistant tuberculosis (MDR-TB). NanoBioMedicine, 285–314.

Tao, Y., Yue, Y., Qiu, G., Ji, Z., Spillman, M., Gai, Z., Chen, Q., Bielecki, M., Huber, M., & Trkola, A. (2022). Comparison of analytical sensitivity and efficiency for SARS-CoV-2 primer sets by TaqMan-based and SYBR Green-based RT-qPCR. Applied Microbiology and Biotechnology, 106(5), 2207–2218.

Traoré, A. N., Rikhotso, M. C., Mphaphuli, A., Patel, S. M., Mahamud, H. A., Kachienga, L. O., Kabue, J.-P., & Potgieter, (2023). Isoniazid and Rifampicin Resistance-Conferring Mutations in Mycobacterium tuberculosis Isolates from South Africa. Pathogens, 12(8), 1015.

Ugwu, C. C., Hair-Bejo, M., Omar, A. R., Nurulfiza, M. I., & Aini, I. (2023). TaqMan probe-based qPCR method for specific detection and quantification of fowl adenovirus 8b challenge from chickens inoculated with live attenuated or inactivated virus. Open Veterinary Journal, 13(2), 171–178.

Zhang, H., Ganova, M., Yan, Z., Chang, H., & Neuzil, P. (2020). PCR multiplexing based on a single fluorescent channel using dynamic melting curve analysis. ACS Omega, 5(46), 30267–30273.

Downloads

Published

2025-04-21

How to Cite

Merdekawati, F., Suryawan, M. R. ., Nurhayati, B. ., Rinaldi, S. F. ., & Juliastuti, A. . (2025). Assessment of Analytical Specificity in qPCR: SYBR Green and TaqMan Probe Methods for Isonazid-Resistant Mycobacterium tuberculosis. Mukhtabar : Journal of Medical Laboratory Technology, 3(1), 15–24. https://doi.org/10.52221/mjmlt.v3i1.793